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The niajor research effort of the Principal Investigator during the indicated 

period has been devoted t o  a study of "symmetry breaking" in the Taylor 

problem, and a general study of various spiral-flow problems. The study of 

spiral flows is part  of a general investigation of vortex breakdown. 

I. The  Ta&r Problem. A new approach for determining steady flows of 

the Taylor problem has been developed to  analyze the experimental results of 

Benjamin [l] and Benjamin 6. hlullin (21, and a paper [13] has been submitted 

for publication. The approach makes use of a "structure" parameter and leads 

to a bifurcation diagram of the type shown in Figure 1 for flows with two and 

four cells and a bifurcation diagram of the type shown in Figure 2 for flows with 

one a n d  two cells. One assumes that  the fluid fills the space between two 

concentric cylinders with radii R ,  and R,, R 2  > R , ,  and both of length 1. 

The inner and outer cylinders are rotated at constant speeds fll and fl,, 

respectively. Set 

f l 1 ( W l 2 )  
1 --q2 

p=f12/fll, q = R 1 / R 2 ,  d = R 2 - R l ,  and A = 

The Taylor number, T, and the structure parameter, 7, are defined by the 

formulas 



1 
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The Taylor number T is a typical "load" parameter for the Taylor problem, 

however, the use of the structure parameter 7 appears t o  be new. The 

parameter 7 is a measurement of how far away certain physical parameters 

are from the Rayleigh line (see, e.g., [5, p. 1381 for a discussion of the role of the 

Rayleigh line in the Taylor problem). 

The results obtained for steady flows of the Taylor problem by the 

structure parameter approach, such as those indicated in Figure 1 and Figure 2, 

are in almost complete agreement with the experimental results in [l; 21, and 

are more complete than results obtained by means of amplitude equations [3], 

catastrophe theory [l], or singularity theory (141. 

11. I 7  c l l a m d h m  . The study of rotating channel flows is a 

preliminary step in the study of spiral flows in the next section. These problems 

have some important features in common with spiral flows but are somewhat 

easier to analyze than the spiral flows in Section 111. 

A. &&a&& Coiiette flow . A paper [7] (with G. Knightly) on combined 

rotating Couette-Poiseuille channel flow has been completed in which it is 

shown t h a t  the superposition of a Poiseuille flow on a rotating Couette channel 

flow is destabilizing. In the case of non-rotating Couette-Poiseuille flow, a 

result of this type was conjectured in [11] on the basis of numerical calculations 

for the linearized Navier-Stokes equations. The paper [7] develops one possible 

version of the structure parameter approach for fluid mechanics; a second 



version of the approach is used in Section IIB t o  study the opposite problem of 

the superposition of a Couette flow on a rotating Poiseuille flow. 

If U, (respectively, U p )  denotes the maximum velocity of pure Couette 

flow (respectively, pure Poiseuille flow) along the axis of the channel when there 

is no Poiseuille flow present (respectively, no Couette flow present), if i2 

denotes the rate of rotation about a n  axis perpendicular to the plane of mean 

flow (e.g., see the set up in [4; SI), and if I denotes the “width” of the channel, 

then the swirl-like parameter, S,, and a Reynolds number, R ,  are defined by 

For fixed S,, 0 < S, < 1/2, the appropriate structure parameter, y, and load 

parameter, 1, are defined by 

( 5 )  x = [2S,(1-2S,)]”2R. 

The structure parameter 7 can now be used as an  amplitude parameter to 

carry out a nonlinear analysis of the problem. As in [6; 131, the scaling for 

is of the form 

(6) = Po - Po?(P02W, 7 E R’ 9 

where po is the smallest, positive, characteristic value of the linearized base 

problem when y = 0, b is a known constant, and T is t o  be determined. 

Note tha t ,  for fixed U, and S,, 7 is a measurement of the component of 
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Poiseuille flow so tha t  the structure parameter approach provides a natural way 

to analyze the effects of the superposition of a Poiseuille flow on a rotating 

Couette channel flow. In the next section a completely different choice of 

structure parameter is made in order to analyze the effects of the superposition 

of a Couette flow on a rotating Poiseuille channel flow. 

. .  B. R . o t a t i n e : P d l e  flow . A second paper is in preparation on the 

effects of the superposition of a Couette flow on a rotating Poiseuille channel 

flow; such an  analysis also leads to new results for rotating Poiseuille flow when 

there is no Couette flow present (e.g., see [4; 81). 

Let U , ,  U p ,  0 and 1 be defined as in Section IIA above. We now define, 

however, a swirl-like parameter, S p ,  and a Reynolds number, R ,  as 

('7) 

U 

The appropriate structure parameter, 7, is then defined as 

Note that if U, = 0, i.e., the problem of pure Poiseuille flow, then for 7 near 

1 . The values Sp 2 - correspond to those 1 
y = O  we have Sp near Sp = - 

2 2 

rotation rates in the experiments in [4] for which roll-like instabilities with non- 

dimensional wave number approximately" five were observed. Since the 

numerical calculations in (81 indicate that the minimum Reynolds number for 
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in the linearized problem corresponds t o  a non-dimensional wave 

number of approximately five, the nonlinear analysis here in the special case 

when U, = 0 leads to results t h a t  are in very close agreement with the 

experimental results in [4]. The results obtained here for U, # 0 are quite 

different than  those obtained in [ll; 121 for non-rotating Couette-Poiseuille flow 

and show the strong effects of rotation. 

1 
sp = a  

The analysis in this section is based upon a modified structure parameter 

approach tha t  is suitable for studying problems in which X is of the form 

rather than  the form given in (6). A modified structure parameter approach is 

required also in the next section t o  study spiral flows in a cylindrical annulus 

and: in fact, the modified approach used here was deve!eped originally for the 

study of such spiral flows. 

111. . Various spiral flows have been considered but most of the 

actual analysis has been carried out for the spiral flows described in [5 ,  Chap. 

VI]. Such spiral flows have been chosen, in particular, as a natural class of 

flows for testing Ludwieg’s proposal for vortex breakdown. 

A. R&&.g I ,  Coilette flow . If we use the set up described in [5 ,  fj51ff.1, one 

may apply a modified structure parameter approach using a structure 

parameter, y, tha t  is proportional to sin(x-$), where x is the spiral angle of 

the basic flow and $ is the spiral angle of the disturbed flow. If, e.g., the 
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disturbances are axisymmetric (i.e., $= ~ / 2 ) ,  then 7 is proportional to the 

axial rate of sliding, U,. On the other hand, if x = 0, then one has formally a 

sit.uation analogous to but more complicated than that  in Section IIA. Provided 

t h a t  such a formal approach could be justified, it would show, in particular, 

t h a t  a vanishingly small axial shear would be sufficient to destabilize a pure, 

stable, swirling flow; this is the same type of result as tha t  obtained in [9] using 

a formal inviscid analysis. The indicated approach would lead also to spiral 

flows t h a t  are of the same type as those obtained in the experiments in [lo]. 

Such spiral flows seem t o  be the natural class of flows in which to test 

””, ~~* breakdown L - - -  - - - -  L1- - - -  TlldT,$Tieg’s prGpGsa! f G r  TFcI”+ --- U ~ C ~ U X  ~ l e y  are probably tile 

simplest clasg of non-axisymmetric flows that  occur in practice. 

flow. If we use the general set up in [5, Chap. VI] 

with Uc = O and 0: = R,. Qne is led to a sitn;1tic;n somewhat, 

analogous to Section IIB. In the case of spiral flows, however, the appropriate 

1 
2 

swirl-like parameter no longer varies near Sp = - and the analysis appears to 

be considerably more difficult than that  in Section IIB. Nevertheless, the use of 

Rayleigh’s criterion (e.g., see [ 5 ] )  again suggests an  appropriate structure 

parameter so tha t  one can proceed with a modified structure parameter 

approach. One would like here, in particular, t o  obtain spiral flows t h a t  are in 

a.greement with the experimental results in 15, $461 when fll = f&; if fl, # f12, 

then the bifurcating spiral vortices are apparently unsteady in every coordinate 

system and  a different type of analysis must be used. 
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I t  is expected tha t  the main efforts of the Principal Investigator during the 

next six months will be devoted to the completion of the work on rotating 

Poiseuille channel flows outlined in Section IIB, the justification of the formal 

approaches to spiral flows indicated in Section 111, the determination of the 

exact role of Rayleigh's criterion in spiral flow problems and the investigation of 

Ludwieg's proposal for vortex breakdown. 
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